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A Specification of the General Theory of Quasi-Static
Linear Gradient Chromatography: Relationship with the
Overload Chromatography Theory in the Presence of
Mutual Molecular Interactions

TSUTOMU KAWASAKI

CHROMATOGRAPHIC RESEARCH LABORATORY
KOKEN CO. LTD.
3-5-18 SHIMO-OCHIAIL SHINJUKU-KU, TOKYO 161, JAPAN

Abstract

The earlier theory of quasi-static linear gradient chromatography with small
sample loads is partially specified. On the basis of this study, the relationship
between the theory of small load gradient chromatography and the approximate
theory of overload gradient chromatography which was developed several years
ago is also specified; this will promote a better understanding of the overload
theory.

INTRODUCTION

Earlier (I, 2), a general theory of quasi-static linear gradient chroma-
tography was developed. Quasi-static chromatography as finally been
defined in Ref. 2 represents chromatography in which (a) the transition
rate of a molecule between the mobile and the stationary phase is so high
that the phase transition effect hardly contributes to the longitudinal
molecular diffusion in the column; (b) the longitudinal contribution of
the Brownian diffusion occurring in the mobile phase is also negligible;
and (c) no diffusion occurs in the stationary phase. (This definition of
quasi-static chromatography is less severe than that proposed in
Appendix I of Ref. 1.) The theory developed in Refs. 1 and 2, however, is
limited to the case where mutual interactions among sample molecules
are negligible, or, from a practical point of view, the theory is only valid
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for the case of small sample loads. The small load theory is outlined in
the Appendix.

The first purpose of the present work is to analyze in detail the
derivation process of Eq. (A19) from Eq. (A17) in the Appendix; this will
promote a better understanding of the small load theory. In the earlier
papers (3-3), the approximate theory of gradient chromatography in
which account is taken of mutual molecular interactions occurring in the
stationary phase has been developed for the purpose of elucidating the
mechanism of hydroxyapatite chromatography; the interactions occur-
ring in the mobile phase are negligible since the molecular concentration
in solution is usually low.* This theory can be called overload gradient
chromatography theory since, under the overload condition, the mutual
molecular interactions occurring in the stationary phase are very
important. The second purpose of the present work consists in specifying
the relationship between the small load theory (Appendix) and the
overload theory, and the specification is made in connection with the
derivation analysis of Eq. (A19) from Eq. (A17) with small sample loads,
which will promote a better understanding of the theory of overload
gradient chromatography (3-35).

Physical meanings of any symbols involved in the equations are given
in the Appendix.

THEORETICAL

(A) Physical Meaning of Eq. (A17) in the Appendix

1t should be recalled (/) that Eq. (A8) in the Appendix represents the
continuity equation for the molecular flux (of the chromatographic
component under consideration) occurring in the column provided there
are no longitudinal diffusions in the column except Brownian diffusion.
If Fick’s second law (Eq. A9 or A12) is substituted into Eq. (A8), then Eq.
(A14) is derived. Equation (A14) states that, provided the longitudinal
molecular diffusion in the interstitial liquid in the column occurs

*The approximate theory of gradient chromatography in which account is taken of
mutual molecular interactions (3-5) has been developed in connection with the competition
model for the adsorption and desorption phenomena occurring in the column (For the
model, see the Introduction Section in Ref. 6). The theory is valid even in the case when the
competition model is not applicable. For instance, by modifying the expression in the
intermediate or the right-hand side of Eq. (5) in Ref. 5, the theory is applicable to any
gradient chromatography.
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independently of the chromatographic mechanism following Fick’s
second law (Eq. A9 or Al2), then the chromatography is carried out
independently of molecules existing in the interstitial liquid, following
Eq. (Al4) (cf. Ref. 6, Appendix II). Equation (A17) is another expression
of Eq. (A14) obtained by substituting both Egs. (Al5) and (A16) into Eq.
(Al14). In gradient chromatography, it is Eq. (A17), rather than Eq. (A14),
that has a fundamental physical meaning since Eq. (A17) involves the
minimal number, two, of variables (s and m) whereas Eq. (A14) involves
three (L', V, and m).

Equation (A17) is self-consistent with the physical meaning, which is
involved in itself, that the chromatography is carried out independently
of molecules existing in the interstitial liquid. This is because both
variables s and m are intensive quantities with a dimension of concen-
tration (for the gradient element), respectively, and Eq. (A17) shows the
change in molecular density, , in the stationary phase occurring with
changes in concentrations (s and m) of the gradient element, inde-
pendently of molecules existing in the interstitial liquid (for details, see
Ref. 6, Appendix II). Equation (Al7) represents the idealized chroma-
tographic process occurring in the absence of any longitudina!l diffusion
in the column since no diffusion occurs in the stationary phase (see
Introduction Section).

Equation (A17) does not represent the conservation of the amount of
molecules in a section of the column. In fact, the conservation occurring
in the column section can be represented by using Eq. (A8), so that the
conservation realized in the absence of any longitudinal diffusion in the
column can be represented by using Eq. (A8) in which 0, is replaced
with zero, or by using the equation

div,. [B(m)ﬂ] + _6_Q =0 (1)

By using both Eqs (A13) and (A18), the term B(m)Q in Eq. (1) can be
rewritten as B(m)/[l — B(m)]}x. It can now ben seen that Eq. (1) is dif-
ferent from another expression, Eq. (A14), of Eq. (A17); this means that
Eq. (A17) does not represent the conservation of the amount of molecules
in the column section. (For further arguments on Eq. Al7, see Ref. 6,
Appendix 11, and Ref. 7))

(B) Analysis of the Derivation of Eq. (A19) from Eq. (A17)

Introducing a new parameter, C, defined as
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= _ B(m)
C=T"Bm* (2)
Eq. (A17) can simply be rewritten as Eq. (A19), and, whereas Eq. (A17)
has a general solution:

x=®@F -s) 3
Eq. (A19) has a general solution:

B(m)

S 5]

OF —5) 4
where

r o=

J'"' __Bm) (5)

min 1 — B(m)

and @ is any function. On the other hand, Eq. (2) is equivalent to both
Egs. (A13) and (A18). This means that the parameter C defined by Eq. (2)
has the same physical meaning as C apearing in Fick’s second law (Eq.
A9 or Al2), representing the molecular density in the interstitial liquid in
the column.

[t can now be understood that the process of deriving Eq. (A19) from
Eq. (A17) consists of two steps of (a) estimating, by using Eq. (2) (or both
Eqgs. Al3 and A18), the molecular density C in the mobile phase that is in
equilibrium with the molecular density y in the stationary phase, and (b)
substituting C for x in Eq. (A17). It should be pointed out, however, that
Procedure (a) is inconsistent with the physical meaning involved in Eq.
(A17) that the chromatography should be carried out independently of
molecules existing in the interstitial liquid in the column (see Section A).
This is because Procedure (a) is based upon the hypothesis that the
molecular density C in the mobile phase is in equilibrium with molecular
density y in the stationary phase even in the ideal case of no longitudinal
diffusion in the column; this means that the chromatographic mech-
anism is dependent upon molecules existing in the interstitial liquid in
the column even in this ideal case.

Let us examine, however, the case when a molecular band with an
infinitesimal width is migrating on the column in the absence of
longitudinal diffusion. In this instance, Eq. (3) can be represented by
using a delta-function:
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x=8(r -s) (6)

We consider the flow of molecules at a given position L' (= s/g’; see Eq.
A16) on the column. Then, it will be observed that the value of the
parameter r increases with a lapse of time because m increases with a
lapse of time (see Eq. (5) in which B is a monotonical function of m
increasing from 0 to 1 with an increase in m from m,, to ©), and that all
the molecules appear at a certain value of ». The probability that the
molecules appear between the value 7 and 7 + dr of the parameter r can
be given by ydr or 8( — s)dr (to be precise,

P4
f 8(r — s)dr

see Eq. 6). This means that the probability (written as Cdm) that the
molecules appear between concentration m and m + dm of the gradient
element is equal to & — s) - (dr /dm) - dm, thus leading to

— . _g’:_ = _(1_?:_
C=38(F —s) il e (7
where C is normalized in such a way that
f Cdm =1 (8)

Min

It can simply be interpreted that the molecules appearing between the
values m and m + dm of the parameter m represent those existing in the
interstitial liquid in the column since m represents the concentration (of
the gradient element) occurring in the interstitial liquid. By differentiat-
ing Eq. (5) with respect to m,

dr _ _ B(m)
dm 1 — B(m) ©)

is obtained, and, from both Egs. (7) and (9), Eq. (2) can be derived. Hence,
as far as the molecular band with an infinitesimal width is concerned, the
parameter C endowed with a physical meaning of the probability density
of the existence can be defined by using Eq. (2), and, on the basis of Eq.
(2), Eq. (A19) can be derived from Eq. (A17). This derivation procedure is
not inconsistent with the fundamental hypothesis that the chroma-
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tography should be carried out independently of molecules existing in
the interstitial liquid in the column.

In an earlier paper (2) it was mentioned that, in general, it is possible to
divide the column into an infinite number of quasi-parallel micro-
columns with an infinitesimal cross-sectional area in such a way that
molecular bands with an infinitesimal width are distributed among the
respective microcolumns. The phases of infinitesimal bands belonging in
different microcolumns are always different from one another, at least by
an infinitesimal magnitude, and a given infinitesimal band migrates
within the same microcolumn throughout the whole process of chroma-
tography [see Ref. 2; the argument can be compared with that for the case
when there are mutual molecular interactions (Discussion Section B)].
This means that the migration of the infinitesimal molecular band
occurring within each microcolumn is carried out independently of
molecules existing in the interstitial liquid in the microcolumn, following
Eq. (A19). The derivation of Eq. (A21) from Eq. (A19) can be interpreted
to represent the accumulation procedure of the microcolumns to make
up a total column. In each microcolumn (or in Eq. A19), the parameter C
is endowed with a physical meaning of the probability density of the
existence (see above). In the total column (or in Eq. A21 or A24), however,
C has a physical meaning of the molecular density in the interstitial
liquid.

In connection with Eq. (A21), Eq. (A19) insists on its validity only for
the case of the infinitesimal molecular band while, due to the physical
meaning of Eq. (A17), Eq. (A19) can have a physical meaning only when
the infinitesimal molecular band is concerned. As a result, a self-
consistent theoretical system as represented in the scheme in the
Appendix is completed, provided there are no mutual molecular
interactions in the column.

DISCUSSION

(A) General Discussion

Equation (A17) represents a chromatographic process occurring in the
stationary phase independently of molecules existing in the interstitial
liquid in the column (Theoretical Section A). In accordance with the
physical meaning of Eq. (Al7), it can, in general, be stated that the
molecular density, C, in the interstitial liquid occurring at a given
position, L', on the column in the absence of longidutinal diffusion can
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be calculated as a decrease in molecular density, x, in the stationary
phase (given by Eq. 3 as a solution of Eq. A17) occurring at the position L'
with an increase in concentration, m, of the gradient element. Thus,
taking into account the fact that the value of the parameter s is
determined if the position L' is given (since the slope g’ of the gradient is
constant; see Eq. A16), C can be represented as

= — (%)ss (10)

where the constant s (with the same dimension as m; see Eq. Al16) has
been added in order for the dimension of C to be identical with that of x;
this is necessary for Eq. (10) to be compatible with Eq. (A13). In an earlier
paper (), it was shown that Eq. (7) can, in fact, be derived from Eq. (10) as
an extreme case when the width of the molecular band migrating on the
column tends to infinitesimal; in this extreme case the parameter C is
endowed with the physical meaning of the probability density of the
existence of the molecules in the interstitial liquid in the column. (Cf. Eq.
31 in Ref. 5 in which the parameter C/s is used, instead of C, to represent
the molecular concentration in the interstitial liquid of the column; cf.
also Eq. 7 in Ref. 5))

(B) Relationship with the Case When There Are Mutual Interactions
among Sample Molecules

From their physical meanings, it can be understood that Eqs. (Al)-
(Al18) in the Appendix are even valid for the case when mutual
interactions occur among sample molecules existing in the stationary
phase; the interactions occurring in the interstitial liquid in the column
are negligible since the molecular concentration in solution is usually
low. In the presence of molecular interactions, parameter B is a function
of the molecular densities, ¥, for the respective components of the sample
mixture. Therefore, Egs. (Al), (Ad), (A6), (A8), (Al4), and (Al7) are
simultaneous equations for the respective components of the mixture.

In the absence of mutual molecular interactions, it is possible, in
general, to divide the total column into an infinite number of micro-
columns in such a way that a given infinitesimal molecular band
migrates within the same microcolumn not only at a given instant but
also throughout the whole process of chromatography (Theoretical
Section B). In the presence of repulsive molecular interactions (usual
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case; cf. Refs. 3-5), however, the situation is different. Under this
situation, although the total column can be divided into microcolumns in
such a way that molecular bands with an infinitesimal width are
distributed among the respective microcolumns at a given instant, the
infinitesimal band occurring within each microcolumn at the given
instant will have a finite width immediately after the migration of the
band begins; this is due to interactions among molecules. (At any given
instant, however, it is possible to redefine the microcolumns in order for
molecular bands with an infinitesimal width to be redistributed among
the respective microcolumns.)

In the presence of mutual molecular interactions, let us divide the total
column into microcolumns in such a way that infinitesimal molecular
bands are distributed among the respective microcolumns initially or at
the beginning of the development process of chromatography. The
chromatographic process occurring in each microcolumn can be de-
scribed by Eq. (A17), which is simultaneous equations in this case; in Eq.
(A17), B is a function of not only m but also of y’s for the respective
components of the sample mixture. Equation (10) also holds when yx
represents one of the solutions of the simultaneous equations, Eq. (A17),
and C represents the molecular density in the interstitial liquid in the
microcolumn for the molecular component under consideration. In
earlier papers (3, 5), the molecular density C (or the theoretical
chromatogram) occurring in a microcolumn was calculated on the basis
of Eq. (10) for a mixture of molecules with the same dimensions and the
same shape, taking into account repulsive molecular interactions (see
Egs. 43 and 44 in Ref. 5 in which the parameter C/s is used, instead of C,
to represent the molecular concentration in the interstitial liquid in the
column; cf. also Eq. 7 in Ref 5). Further, it was shown (5) that the
equations (Eqs. 43 and 44 in Ref. 5) occurring in the presence of
molecular interactions converge into Eq. (31) in Ref. 5, i.e,, Eq. (7) at the
limit of no molecular interactions.

In the presence of mutual molecular interactions, it is mathematically
difficult to derive from Eq. (Al7) a simple equation like Eq. (A19)
occurring in the absence of molecular interactions. In an earlier paper
(4), a method of the approximate calculation of chromatograms on the
basis of Eq. (A17) was developed in which account was taken of both
mutual molecular interactions and longitudinal diffusion occurring in
the column.

APPENDIX

An outline of the earlier theory of quasi-static linear gradient chroma-
tography with small sample loads (/, 2) is given in Scheme 1, where:
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=
L=

L'=

time.

any longitudinal position on the column, ie., the
distance from the column inlet.

any longitudinal position on the column repre-
sented as the sum of interstitial volumes involved
between the column inlet and the column position,
L, under consideration. In some instances, L',
represents the total column “length,” i.e., the total
interstitial volumes involved in the column.
longitudinal column position (represented in units
of volume) at which the beginning of the con-
centration gradient exists.

= elution volume.
= distance between the column inlet and a mean

position of the band of the sample molecules (of the
chromatographic component under consideration)
migrating on the column; this is expressed as the
sum of interstitial volumes involved between the
column inlet and the longitudinal mean position of
the band under consideration.

mean concentration of the gradient element in the
mobile phase within any vertical section of the
column. In some instances, m also represents the
mean concentration in the mobile phase within the
last infinitesimal vertical section at the outlet of the
column, or the solution that has just been eluted out
of the column.

= concentration of the gradient element in the mobile

phase at the inlet of the column.

initial concentration of the gradient element in the
mobile phase at the beginning of the concentration
gradient.

positive constant (with a dimension of concentra-
tion/volume) representing the slope of the concen-
tration gradient in the column. This is expressed as
the increase in the concentration per unit “length”
of the column, measured from the outlet to the inlet;
the column “length” is represented in units of
volume.

parameter with a dimension of concentration repre-
senting “time” in the second point of view on
gradient chromatography; in the first point of view,
s represents the product of g’ and L'.
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r=

B(s,m), B(r),and B =

D=

D therm —
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parameter with a dimension of concentration. r/g’
(with dimensions of volume) represents the longi-
tudinal position on the column expressed as the
sum of the interstitial volumes involved between the
column inlet and the longitudinal position under
consideration.

mean total density of sample molecules (of the
chromatographic component under consideration)
in both mobile and stationary phases in a vertical
column section.

mean density of sample molecules (of the chroma-
tographic component under consideration) in mo-
bile phase in a vertical column section. C is related
to ©2 by Eq. (A18).

mean density of sample molecules (of the chroma-
tographic component under consideration) in sta-
tionary phase in a vertical column section. y is
related to both 2 and C by Eq. (A13).

partition of sample molecules (of the chromato-
graphic component under consideration) in the
mobile phase in a vertical column section, or the
ratio of the amount of molecules in the mobile
phase to the total amount in that column section.
migration velocity (represented in units of volume/
time) of the concentration gradient in the L’
direction on the (L',m) plane. (See Fig. 1 in Ref. 7,
Appendix I1.)

migration velocity (represented in unit of concen-
tration/time) of the “gradient” in the m direction on
the (L’,m) plane; “gradient” is defined as an assem-
bly of longitudinal positions on the column which
migrates on the concentration gradient. (See Fig. 1
in Ref. I, Appendix I1.)

diffusion coefficient for the longitudinal diffusion
in the column that is directly provoked by the flow
heterogeneity in the carrier liquid. D’ is represented
in units of volume*/time (instead of length?/time)
since longitudinal column position, L', is repre-
sented in units of volume.

thermal Brownian diffusion constant of sample
molecules (of the chromatographic component
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under consideration) in the interstitial liquid in the
column, represented in units of length*/time.
D}yerm = positive constant (with dimensions of volume?/time)
defined as (L'/LY** Dyerm-
D* = parameter (with dimensions of concentration’/time)
defined by Eq. (A22).
6 = parameter (with dimensions of volume) defined by
Eq. (A2).
Bipem = parameter (with dimensions of volume) defined by
Eg. (All).
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