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A Specification of the General Theory of Quasi-Static 
Linear Gradient Chromatography: Relationship with the 
Overload Chromatography Theory in the Presence of 
Mutual Molecular Interactions 

TSUTOMU KAWASAKI 
CHROMATOGRAPHIC RESEARCH LABORATORY 
KOKEN CO. LTD. 
3-5-18 SHIMO-OCHIAI. SHINJUKU-KU. TOKYO 161. JAPAN 

Abstract 

The earlier theory of quasi-static linear gradient chromatography with small 
sample loads is partially specified. On the basis of this study, the relationship 
between the theory of small load gradient chromatography and the approximate 
theory of overload gradient chromatography which was developed several years 
ago is also specified; this will promote a better understanding of the overload 
theory. 

INTRODUCTION 

Earlier (I, 2), a general theory of quasi-static linear gradient chroma- 
tography was developed. Quasi-static chromatography as finally been 
defined in Ref. 2 represents chromatography in which (a) the transition 
rate of a molecule between the mobile and the stationary phase is so high 
that the phase transition effect hardly contributes to the longitudinal 
molecular diffusion in the column; (b) the longitudinal contribution of 
the Brownian diffusion occurring in the mobile phase is also negligible; 
and (c) no diffusion occurs in the stationary phase. (This definition of 
quasi-static chromatography is less severe than that proposed in 
Appendix I of Ref. I.) The theory developed in Refs. I and 2, however, is 
limited to the case where mutual interactions among sample molecules 
are negligible, or, from a practical point of view, the theory is only valid 
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2388 KAWASAKI 

for the case of small sample loads. The small load theory is outlined in 
the Appendix. 

The first purpose of the present work is to analyze in detail the 
derivation process of Eq. (A19) from Eq. (A17) in the Appendix; this will 
promote a better understanding of the small load theory. In the earlier 
papers (3-9, the approximate theory of gradient chromatography in 
which account is taken of mutual molecular interactions occurring in the 
stationary phase has been developed for the purpose of elucidating the 
mechanism of hydroxyapatite chromatography; the interactions occur- 
ring in the mobile phase are negligible since the molecular concentration 
in solution is usually low.* This theory can be called overload gradient 
chromatography theory since, under the overload condition, the mutual 
molecular interactions occumng in the stationary phase are very 
important. The second purpose of the present work consists in specifying 
the relationship between the small load theory (Appendix) and the 
overload theory, and the specification is made in connection with the 
derivation analysis of Eq. (A19) from Eq. (A17) with small sample loads, 
which will promote a better understanding of the theory of overload 
gradient chromatography (3-5). 

Physical meanings of any symbols involved in the equations are given 
in the Appendix. 

THEORETICAL 

(A) Physical Meaning of Eq. (A17) in the Appendix 

It should be recalled (I) that Eq. (A8) in the Appendix represents the 
continuity equation for the molecular flux (of the chromatographic 
component under consideration) occurring in the column provided there 
are no longitudinal diffusions in the column except Brownian diffusion. 
If Fick's second law (Eq. A9 or A12) is substituted into Eq. (A8), then Eq. 
(A14) is derived. Equation (A14) states that, provided the longitudinal 
molecular diffusion in the interstitial liquid in the column occurs 

*The approximate theory of gradient chromatography in which account is taken of 
mutual molecular interactions (3-5) has been developed in connection with the competition 
model for the adsorption and desorption phenomena occumng in the column (For the 
model, see the Introduction Section in Ref. 6). The theory is valid even in the case when the 
competition model is not applicable. For instance, by modifying the expression in the 
intermediate or the right-hand side of Eq. (5) in Ref. 5, the theory is applicable to any 
gradient chromatography. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
5
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



SPECIFICATION OF GRADIENT CHROMATOGRAPHY THEORY 2367 

independently of the chromatographic mechanism following Fick's 
second law (Eq. A9 or A12), then the chromatography is carried out 
independently of molecules existing in the interstitial liquid, following 
Eq. (A14) (cf. Ref. 6, Appendix 11). Equation (A17) is another expression 
of Eq. (A14) obtained by substituting both Eqs. (A15) and (A16) into Eq. 
(A14). In gradient chromatography, it is Eq. (A17), rather than Eq. (A14), 
that has a fundamental physical meaning since Eq. (A17) involves the 
minimal number, two, of variables (s and m) whereas Eq. (A14) involves 
three (L', V, and m). 

Equation (A17) is self-consistent with the physical meaning, which is 
involved in itself, that the chromatography is carried out independently 
of molecules existing in the interstitial liquid. This is because both 
variables s and m are intensive quantities with a dimension of concen- 
tration (for the gradient element), respectively, and Eq. (A17) shows the 
change in molecular density, x, in the stationary phase occurring with 
changes in concentrations (s and m) of the gradient element, inde- 
pendently of molecules existing in the interstitial liquid (for details, see 
Ref. 6, Appendix 11). Equation (A17) represents the idealized chroma- 
tographic process occurring in the absence of any longitudinal diffusion 
in the column since no diffusion occurs in the stationary phase (see 
Introduction Section). 

Equation (A17) does not represent the conservation of the amount of 
molecules in a section of the column. In fact, the conservation occurring 
in the column section can be represented by using Eq. (A8), so that the 
conservation realized in the absence of any longitudinal diffusion in the 
column can be represented by using Eq. (A8) in which ethem is replaced 
with zero, or by using the equation - 

(1) 
an 
av div,. [ B ( m ) n ]  + ___ = 0 

By using both Eqs. (A13) and (Al8), the term BG)sZ in Eq. (1) can be 
rewritten as BF) / [ l  - B(rn)]ix. It can now ben seen that Eq. (1) is dif- 
ferent from another expression, Eq. (A14), of Eq. (A17); this means that 
Eq. (A17) does not represent the conservation of the amount of molecules 
in the column section. (For further arguments on Eq. A17, see Ref. 6, 
Appendix 11, and Ref. 7.) 

(B) Analysis of the Derivation of Eq. (A19) from Eq. (A17) 

Introducing a new parameter, C, defined as 
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2368 KAWASAKI 

Eq. (A17) can simply be rewritten as Eq. (A19), and, whereas Eq. (A17) 
has a general solution: 

Eq. (A19) has a general solution: 

where 

and Q, is any function. On the other hand, Eq. (2) is equivalent to both 
Eqs. (A13) and (A18). This means that the parameter C defined by Eq. (2) 
has the same physical meaning as C apearing in Fick‘s second law (Eq. 
A9 or A12), representing the molecular density in the interstitial liquid in 
the column. 

It can now be understood that the process of deriving Eq. (A19) from 
Eq. (Al7) consists of two steps of (a) estimating, by using Eq. (2) (or both 
Eqs. A13 and AN), the molecular density C in the mobile phase that is in 
equilibrium with the molecular density x in the stationary phase, and (b) 
substituting C for x in Eq. (A17). It should be pointed out, however, that 
Procedure (a) is inconsistent with the physical meaning involved in Eq. 
(A1 7) that the chromatography should be carried out independently of 
molecules existing in the interstitial liquid in the column (see Section A). 
This is because Procedure (a) is based upon the hypothesis that the 
molecular density C in the mobile phase is in equilibrium with molecular 
density x in the stationary phase even in the ideal case of no longitudinal 
diffusion in the column; this means that the chromatographic mech- 
anism is dependent upon molecules existing in the interstitial liquid in 
the column even in this ideal case. 

Let us examine, however, the case when a molecular band with an 
infinitesimal width is migrating on the column in the absence of 
longitudinal diffusion. In this instance, Eq. (3) can be represented by 
using a delta-function: 
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SPECIFICATION OF GRADIENT CHROMATOGRAPHY THEORY 2369 

We consider the flow of molecules at a given position L' (= dg'; see Eq. 
A16) on the column. Then, it will be observed that the value of the 
parameter i increases with a lapse of time because rn increases with a 
lapse of time (see Eq. (5) in which B is a monotonical function of m 
increasing from z0 to 1 with an increase in m from mi, to a), and that all 
the molecules appear at a certain value of i .  The probability that the 
molecules appear between the value I: and i + d i  of the parameter i can 
be given by xdi or 6(i  - s)di  (to be precise, 

i + d i  1 S ( i  - s )d i  

see Eq. 6). This means that the probability (written as Cdm) that the 
molecules appear between concentration m and m + dm of the gradient 
element is equal to S( i  - s) (di ldm) * dm, thus leading to 

d i  d i  
dm dm 

c= 6 ( i  -s)- = x- 

where C is nor.malized in such a way that 

m Imi* Cdm = 

(7) 

It can simply be interpreted that the molecules appearing between the 
values m and m + dm of the parameter m represent those existing in the 
interstitial liquid in the column since m represents the concentration (of 
the gradient element) occurring in the interstitial liquid. By differentiat- 
ing Eq. (5) with respect to m, 

d i  - B(m) 
dm 1 - B ( m )  
~- (9) 

is obtained, and, from both Eqs. (7) and (9), Eq. (2) can be derived. Hence, 
as far as the molecular band with an infinitesimal width is concerned, the 
parameter C endowed with a physical meaning of the probability density 
of the existence can be defined by using Eq. (2),  and, on the basis of Eq. 
(2) ,  Eq. (A19) can be derived from Eq. (A17). This derivation procedure is 
not inconsistent with the fundamental hypothesis that the chroma- 
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2370 KAWASAKI 

tography should be carried out independently of molecules existing in 
the interstitial liquid in the column. 

In an earlier paper (2) it was mentioned that, in general, it is possible to 
divide the column into an infinite number of quasi-parallel micro- 
columns with an infinitesimal cross-sectional area in such a way that 
molecular bands with an infinitesimal width are distributed among the 
respective microcolumns. The phases of infinitesimal bands belonging in 
different microcolumns are always different from one another, at least by 
an infinitesimal magnitude, and a given infinitesimal band migrates 
within the same microcolumn throughout the whole process of chroma- 
tography [see Ref. 2; the argument can be compared with that for the case 
when there are mutual molecular interactions (Discussion Section B)]. 
This means that the migration of the infinitesimal molecular band 
occurring within each microcolumn is carried out independently of 
molecules existing in the interstitial liquid in the microcolumn, following 
Eq. (A19). The derivation of Eq. (A21) from Eq. (A19) can be interpreted 
to represent the accumulation procedure of the microcolumns to make 
up a total column. In each microcolumn (or in Eq. A19), the parameter C 
is endowed with a physical meaning of the probability density of the 
existence (see above). In the total column (or in Eq. A21 or A24), however, 
C has a physical meaning of the molecular density in the interstitial 
liquid. 

In connection with Eq. (A21), Eq. (A19) insists on its validity only for 
the case of the infinitesimal molecular band while, due to the physical 
meaning of Eq. (A17), Eq. (A19) can have a physical meaning only when 
the infinitesimal molecular band is concerned. As a result, a self- 
consistent theoretical system as represented in the scheme in the 
Appendix is completed, provided there are no mutual molecular 
interactions in the column. 

DISCUSSION 

(A) General Discussion 

Equation (A17) represents a chromatographic process occurring in the 
stationary phase independently of molecules existing in the interstitial 
liquid in the column (Theoretical Section A). In accordance with the 
physical meaning of Eq. (A17), it can, in general, be stated that the 
molecular density, C, in the interstitial liquid occurring at a given 
position, L', on the column in the absence of longidutinal diffusion can 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
5
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



SPECIFICATION OF GRADIENT CHROMATOGRAPHY THEORY 2371 

be calculated as a decrease in molecular density, x, in the stationary 
phase (given by Eq. 3 as a solution of Eq. A17) occurring at the position L' 
with an increase in concentration, m, of the gradient element. Thus, 
taking into account the fact that the value of the parameter s is 
determined if the position L' is given (since the slope g' of the gradient is 
constant; see Eq. A16), C can be represented as 

where the constant s (with the same dimension as m; see Eq. A16) has 
been added in order for the dimension of C to be identical with that of x; 
this is necessary for Eq. (10) to be compatible with Eq. (A13). In an earlier 
paper (5), it was shown that Eq. (7) can, in fact, be derived from Eq. (10) as 
an extreme case when the width of the molecular band migrating on the 
column tends to infinitesimal; in this extreme case the parameter C is 
endowed with the physical meaning of the probability density of the 
existence of the molecules in the interstitial liquid in the column. (Cf. Eq. 
3 1 in Ref. 5 in which the parameter C/s is used, instead of C, to represent 
the molecular concentration in the interstitial liquid of the column; cf. 
also Eq. 7 in Ref. 5.) 

(8)  Relationship with the Case When There Are Mutual Interactions 
among Sample Molecules 

From their physical meanings, it can be understood that Eqs. (A1)- 
(A18) in the Appendix are even valid for the case when mutual 
interactions occur among sample molecules existing in the stationary 
phase; the interactions occurring in the interstitial liquid in the column 
are negligible since the molecular concentration in solution is usually 
low. In the presence of molecular interactions, parameter B is a function 
of the molecular densities, x, for the respective components of the sample 
mixture. Therefore, Eqs. (Al), (A4), (A6), (A8), (A14), and (A17) are 
simultaneous equations for the respective components of the mixture. 

In the absence of mutual molecular interactions, it is possible, in 
general, to divide the total column into an infinite number of micro- 
columns in such a way that a given infinitesimal molecular band 
migrates within the same microcolumn not only at a given instant but 
also throughout the whole process of chromatography (Theoretical 
Section B). In the presence of repulsive molecular interactions (usual 
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2372 KAWASAKI 

case; cf. Refs. 3 - 9 ,  however, the situation is different. Under this 
situation, although the total column can be divided into microcolumns in 
such a way that molecular bands with an infinitesimal width are 
distributed among the respective microcolumns at a given instant, the 
infinitesimal band occurring within each microcolumn at the given 
instant will have a finite width immediately after the migration of the 
band begins; this is due to interactions among molecules. (At any given 
instant, however, it is possible to redefine the microcolumns in order for 
molecular bands with an infinitesimal width to be redistributed among 
the respective microcolumns.) 

In the presence of mutual molecular interactions, let us divide the total 
column into microcolumns in such a way that infinitesimal molecular 
bands are distributed among the respective microcolumns initially or at 
the beginning of the development process of chromatography. The 
chromatographic process occurring in each microcolumn can be de- 
scribed by Eq. (A17), which is simultaneous equations in this case; in Eq. 
(A17), B is a function of not only m but also of x’s for the respective 
components of the sample mixture. Equation (10) also holds when x 
represents one of the solutions of the simultaneous equations, Eq. (A17), 
and C represents the molecular density in the interstitial liquid in the 
microcolumn for the molecular component under consideration. In 
earlier papers (3, 5), the molecular density C (or the theoretical 
chromatogram) occurring in a microcolumn was calculated on the basis 
of Eq. (10) for a mixture of molecules with the same dimensions and the 
same shape, taking into account repulsive molecular interactions (‘see 
Eqs. 43 and 44 in Ref. 5 in which the parameter C/s is used, instead of C, 
to represent the molecular concentration in the interstitial liquid in the 
column; cf. also Eq. 7 in Ref. 5). Further, it was shown (5) that the 
equations (Eqs. 43 and 44 in Ref. 5 )  occurring in the presence of 
molecular interactions converge into Eq. (31) in Ref. 5, i.e., Eq. (7) at the 
limit of no molecular interactions. 

In the presence of mutual molecular interactions, it is mathematically 
difficult to derive from Eq. (A17) a simple equation like Eq. (A19) 
occurring in the absence of molecular interactions. In an earlier paper 
(4), a method of the approximate calculation of chromatograms on the 
basis of Eq. (A17) was developed in which account was taken of both 
mutual molecular interactions and longitudinal diffusion occurring in 
the column. 

APPENDIX 

An outline of the earlier theory of quasi-static linear gradient chroma- 
tography with small sample loads (1,2) is given in Scheme 1, where: 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
5
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



SPECIFICATION OF GRADIENT CHROMATOGRAPHY THEORY 2373 

t = time. 
L = any longitudinal position on the column, i.e., the 

distance from the column inlet. 
L‘ = any longitudinal position on the column repre- 

sented as the sum of interstitial volumes involved 
between the column inlet and the column position, 
L, under consideration. In some instances, L‘, 
represents the total column “length,” i.e., the total 
interstitial volumes involved in the column. 

LI, = longitudinal column position (represented in units 
of volume) at which the beginning of the con- 
centration gradient exists. 

V = elution volume. 
W =  distance between the column inlet and a mean 

position of the band of the sample molecules (of the 
chromatographic component under consideration) 
migrating on the column; this is expressed as the 
sum of interstitial volumes involved between the 
column inlet and the longitudinal mean position of 
the band under consideration. 

m = mean concentration of the gradient element in the 
mobile phase within any vertical section of the 
column. In some instances, m also represents the 
mean concentration in the mobile phase within the 
last infinitesimal vertical section at the outlet of the 
column, or the solution that has just been eluted out 
of the column. 

m, = concentration of the gradient element in the mobile 
phase at the inlet of the column. 

mi, = initial concentration of the gradient element in the 
mobile phase at the beginning of the concentration 
gradient. 

g’ = positive constant (with a dimension of concentra- 
tion/volume) representing the slope of the concen- 
tration gradient in the column. This is expressed as 
the increase in the concentration per unit “length 
of the column, measured from the outlet to the inlet; 
the column “length is represented in units of 
volume. 

s = parameter with a dimension of concentration repre- 
senting “time” in the second point of view on 
gradient chromatography; in the first point of view, 
s represents the product of g‘ and L‘. 
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r = parameter with a dimension of concentration. r/g’ 
(with dimensions of volume) represents the longi- 
tudinal position on the column expressed as the 
sum of the interstitial volumes involved between the 
column inlet and the longitudinal position under 
consideration. 

f2 = mean total density of sample molecules (of the 
chromatographic component under consideration) 
in both mobile and stationary phases in a vertical 
column section. 

C = mean density of sample molecules (of the chroma- 
tographic component under consideration) in mo- 
bile phase in a vertical column section. C is related 
to f2 by Eq. (Al8). 

x = mean density of sample molecules (of the chroma- 
tographic component under consideration) in sta- 
tionary phase in a vertical column section. x is 
related to both 

B(s,rn), &), and B = partition of sample molecules (of the chromato- 
graphic component under consideration) in the 
mobile phase in a vertical column section, or the 
ratio of the amount of molecules in the mobile 
phase to the total amount in that column section. 

vh = migration velocity (represented in units of volume/ 
time) of the concentration gradient in the L‘ 
direction on the (L‘,m) plane. (See Fig. 1 in Ref. I ,  
Appendix 11.) 

v$ = migration velocity (represented in unit of concen- 
tratiodtime) of the “gradient” in the m direction on 
the (L’,m) plane; “gradient” is defined as an assem- 
bly of longitudinal positions on the column which 
migrates on the concentration gradient. (See Fig. 1 
in Ref. I, Appendix 11.) 

D’ = diffusion coefficient for the longitudinal diffusion 
in the column that is directly provoked by the flow 
heterogeneity in the carrier liquid. D’ is represented 
in units of volume2/time (instead of length*/time) 
since longitudinal column position, L’, is repre- 
sented in units of volume. 

Dthcm = thermal Brownian diffusion constant of sample 
molecules (of the chromatographic component 

and C by Eq. (A13). 
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SPECIFICATION OF GRADIENT CHROMATOGRAPHY THEORY 2377 

under consideration) in the interstitial liquid in the 
column, represented in units of length2/time. 

D&,,,, = positive constant (with dimensions of volume2/time) 
defined as (L'lL)2 * Dthem. 

D* = parameter (with dimensions of concentration*/time) 
defined by Eq. (A22). 

8 = parameter (with dimensions of volume) defined by 

&he,,,, = parameter (with dimensions of volume) defined by 
Eq. (MI. 

Eq. (All). 
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